
Enforcing Style Invariance in Patch Localization

Elior Ben Arous * 1 Dustin Brunner * 1 Jonathan Manz * 1 Felix Yang * 1

Abstract
This project employs style invariance concepts
from RELIC on the patch localization pretext
task with the goal of attaining style-invariant
image embeddings for downstream tasks. We
investigate multiple augmentation schemes and
analyze the resulting embedding spaces. Our
proposed pretext task achieves significant im-
provements over the standard patch localization
method on downstream tasks. The code is avail-
able at https://github.com/brunnedu/
DeepLearning2022.

1. Introduction
Self-supervised learning (SSL) has grown to be a very suc-
cessful tool in certain fields of machine learning, espe-
cially where large quantities of unlabeled data are easily
acquirable. In these areas, the cost of human annotation
poses the main bottleneck for upscaling learning datasets.
SSL circumvents this issue by extracting relevant informa-
tion from the data through so-called pretext or proxy tasks
where labels are generated in an automated manner. In
(Mitrovic et al., 2020), the authors introduce a theoretical
framework for SSL applied to contrastive learning pretext
tasks. Their work tries to explain the success of mutual
information methods in particular.

In this project, we adopt their style invariance toolkit and
apply it to patch localization, as first described in (Doersch
et al., 2015). We present a general framework for style
invariance in patch localization (SIPL). Specifically, we
train three different models, each exploring a different way
of modifying patch localization to utilize style invariance.
We then evaluate the quality of our learned embeddings by
training a shallow head on the downstream task of image
classification. Our SIPL approach significantly outperforms

*Equal contribution 1Department of Computer Sci-
ence, ETH Zürich, Switzerland. Correspondence
to: Elior Ben Arous <ebenarous@student.ethz.ch>,
Dustin Brunner <brunnedu@student.ethz.ch>, Jonathan
Manz <manzjo@student.ethz.ch>, Felix Yang
<fyang@student.ethz.ch>.

Deep Learning, ETH Zürich, 2022

a baseline implementation of the original patch localization
method (OPL) on said downstream task. Finally, we discuss
some possible reasons for this performance increase and the
implications we see for some other ideas from (Mitrovic
et al., 2020).

2. Models and Methods
We will first briefly explain the key concepts we adopt from
(Doersch et al., 2015) and (Mitrovic et al., 2020) because
these papers are the basis of this project. Based on that,
we will explain our approach and explain the details of our
process.

2.1. Patch Localization

We adopt the patch localization pretext task as presented in
(Doersch et al., 2015) for our model. The target of this task
is to predict the relative position of two patches sampled
from the same image. Specifically, the model is handed a
center patch as well as one of the eight possible neighbors
randomly sampled from a 3× 3 grid surrounding the center
patch. The label is an index from 0 to 7 representing the
relative position of the neighboring patch. To prevent the
algorithm from learning trivial shortcuts, some additional
precautions must be taken (Doersch et al., 2015). We discuss
these in section 2.5.

2.2. RELIC

RELIC (Representation Learning via Invariant Causal
Mechanisms) is a theoretical framework that attempts to
explain the success of mutual information targets in con-
trastive learning (Mitrovic et al., 2020). To do this, they
employ a causal framework wherein images are generated
from two independent latent variables: their style and their
content. Furthermore, the assumption is that all relevant
downstream tasks would only depend on the content vari-
able and thus be invariant to changes in the style of an image.
Of course, the assumed style and content variables are not
known a priori and the style is implicitly defined by a set of
image augmentations. Applying these augmentations is thus
implicitly understood as varying the style variable of the
image while leaving the content variable unchanged. This
style invariance is then applied as a divergence regularizer

https://github.com/brunnedu/DeepLearning2022
https://github.com/brunnedu/DeepLearning2022

Enforcing Style Invariance in Patch Localization

DKL

head

C CN1 N2

CE CE

f1

y

head

f2

Figure 1. The architecture of our pretext task. C and N are the
embeddings of center and neighboring patches respectively. DKL

is the symmetrized Kullback-Leibler divergence and CE is the
cross-entropy loss with respect to the true label y.

between two differently augmented instances of the same
image in contrastive learning. (Mitrovic et al., 2020) also
introduce the concept of refinements as a tool to reason
about transfer learning to downstream tasks, which will be
relevant to the discussion of our results.

2.3. Proposed Idea

In this project, we use the causal framework from RELIC to
modify the patch localization pretext task. We generate two
different patch localization tasks from the same two patches
through an augmentation scheme described in section 2.5.
By applying a softmax to our outputs, we can treat them as
probability distributions, on which we can use divergence
measures.

2.4. Architecture

We split our network into separate “encoder” and “head”
networks. A ResNet-18 is used for encoder and a multi-
layer perceptron with a single hidden layer is used as the
head to avoid dimensional collapse (Jing et al., 2021). We
generate our patch embeddings C andN from the center and
neighboring patches respectively using encoder, as shown
in Figure 2. A pair of embeddings is concatenated prior to
being fed into head, as shown in Figure 1. The output of
the head is softmaxed to produce probability distributions
f . The loss is calculated as follows:

L = CE(f1, y) + CE(f2, y) + α DKL(f1, f2) (1)

where CE is the cross-entropy loss to the true label y,
DKL(f1, f2) := DKL(f1 ∥ f2) + DKL(f2 ∥ f1) is the
symmetrized Kullback-Leibler divergence, and α is a hy-
perparameter used to weigh the style invariance condition
against the patch localization task.

RELIC
augmentations

encoder

C N1 N2

encoder encoder

Figure 2. The augmentation scheme of SIPLV1 leaves the center
patch unaltered and generates two localization problems by apply-
ing two varying augmentations to the outer patch. Feeding a patch
to the encoder generates an embedding.

2.5. Augmentations

In order to generate the patches, which we hand to encoder
as seen in Figure 2, we employ an augmentation pipeline
shown in Algorithm 1. To make better use of smaller-scale
images, we sample patches by cutting the image into a 3×3
grid. We crop each patch down to 56× 56 pixels randomly
to ensure a gap between the center and neighboring patches.
This is lifted from (Doersch et al., 2015) and should prevent
the use of trivial patterns, such as continued textures, for
patch localization. If a patch should be augmented with
RELIC-like augmentations, these transforms are applied
now. The transforms used are adopted from (Mitrovic et al.,
2020) with hand-tuned parameters as listed in Table 2. How-
ever, we discarded random horizontal flips because, unlike
RELIC ’s pretext task, patch localization is not invariant to
them.

Finally, it is shown in (Doersch et al., 2015) that neural
networks can learn to exploit chromatic aberration artifacts
to locate an image patch globally. Chromatic aberration oc-
curs in color photography due to the difference in refraction
between different wavelengths of light. The aforementioned
problem can be addressed by projecting patches onto the
green-magenta color axis and subtracting the projection out
to make hue differences along that axis disappear (Doersch
et al., 2015). We adopt this approach and apply it to all
patches prior to embedding them.

Enforcing Style Invariance in Patch Localization

Algorithm 1 Augmentation Pipeline
Input: image
patches← center(image)
patches← randomNeighbor(image)
for all patches do

Crop and random jitter.
Resize to 224× 224.
if patch is RELIC then

Random resized crop
Color jitter
Random grayscale
Gaussian blur
Random solarize

end if
Color projection
Normalization

end for

Table 1. Common architecture details for the pretext training. For
the downstream task, everything remains the same, except for the
head’s hidden layer size which becomes 1000.

INPUT SIZE 224× 224× 3
encoder ARCHITECTURE RESNET-181

EMBEDDING SIZE 1000
head HIDDEN LAYER SIZE 4096
head ACTIVATION RELU

3. Results
3.1. Experimental Setup

We train four different models for evaluation, each follow-
ing a unique augmentation scheme. The first is a reimple-
mentation of OPL, which does not involve RELIC aug-
mentations. We then have SIPLV1, where only neighbors
are augmented as seen in Figure 2. We’ll write this as
⟨c, A1(n)⟩ , ⟨c, A2(n)⟩. Here, c and n denote the center and
neighboring patches respectively, and A(·) are different aug-
mentations. In SIPLV2, the center and neighbor patches are
augmented in pairs with the same RELIC transforms applied
to both, i.e. ⟨A1(c), A1(n)⟩ , ⟨A2(c), A2(n)⟩. In SIPLV3,
we augment the center patches and neighbor patches differ-
ently, specifically ⟨A1(c), A2(n)⟩ , ⟨A1(c), A3(n)⟩.

All models share an identical architecture for both encoder
and head, summarized in Table 1. The loss function from
Equation 1 is also used for all SIPL models. OPL is trained
with only one patch localization problem and uses cross-
entropy CE(f, y) as its loss. We train each model on the
ILSVRC 2012 (ImageNet) validation set (Deng et al., 2009),
excluding non-RGB images. Table 3 reports the selected
values of training parameters. We find empirically that
SIPLV1 performs best downstream with α = 5 and keep it
identical for SIPLV2 and SIPLV3. The learning rate, batch

0 10 20 30 40 50 60 70 80 90

0.04

0.06

0.08

0.1

0.12

0.14

0.16

OPL
SIPLv1
SIPLv2
SIPLv3

Epochs

Va
lid

at
io

n
Ac

cu
ra

cy

Figure 3. The image classification accuracies of our models on a
held-out validation set plotted against the number of epochs spent
training on Tiny ImageNet.

size and weight decay are optimized using Optuna (Akiba
et al., 2019), a Bayesian hyperparameter tuning library.

3.2. Image Classification

To evaluate the quality of the embeddings generated by our
encoder, we test their performance on the Tiny ImageNet
validation set (Deng et al., 2009). Again, only images with
all 3 color channels are used. Each embedding network
has its weights frozen and a shallow multilayer perceptron
head with 1000 hidden units is appended to them. The head
weights are then trained on 9000 images with 832 held out
as a validation set. In Figure 3 we plot the classification
accuracies of all four models on the validation set. We see
that all models trained with RELIC-like style invariance
conditions converge to a higher accuracy than OPL.

4. Discussion
Before comparing the different downstream experiments,
we want to point out that all of them performed relatively
poorly. This is due to multiple factors. First of all, we solely
wanted to evaluate the expressiveness of the raw embeddings
generated by encoder. Therefore, we deliberately did not
fine-tune encoder during the downstream training, i.e. we
froze encoder’s weights, and only trained a very simple
head with a single hidden layer of 1000 neurons. Secondly,
we only trained on the validation set of the Tiny ImageNet
dataset to preserve the usual setting of SSL where the pretext
dataset is much larger than the downstream dataset.

As shown in Figure 3, our new approach SIPLV1 outper-
forms the baseline OPL by about 26%. However, it is
important to note that in (Doersch et al., 2015), they used a

1(He et al., 2015)

Enforcing Style Invariance in Patch Localization

−60 −40 −20 0 20 40
−60

−40

−20

0

20

40 class 1, style 1
class 1, style 2
class 2, style 1
class 2, style 2

−40 −20 0 20 40 60

−40

−20

0

20

40

60

class 1, style 1
class 1, style 2
class 2, style 1
class 2, style 2

Figure 4. 50 images from two different classes in two different styles embedded by OPL (left) and SIPLV1 (right). The 1000 dimensional
embeddings are projected to 2D using t-SNE.

different downstream task for evaluation, namely object de-
tection instead of image classification. We primarily picked
image classification as an evaluation task due to its simplic-
ity. In principle, this should not matter as we evaluate both
the baseline and our models on the same task. However,
it could be that the style invariance condition applied in
our models somehow intrinsically favors classification as a
downstream application. Investigating the expressiveness of
embeddings generated by an encoder trained on our pretext
task for other downstream tasks such as object detection
would be interesting future work.

4.1. Embedding Space Analysis

We want to visualize the embedding spaces generated by
these different models. For this purpose, 50 images from
two different classes each are randomly chosen from Tiny
ImageNet. Using only the RELIC transforms listed in Algo-
rithm 1 and normalization, we generate two distinct augmen-
tations and apply each to both sets of images. This yields
four sets of 50 images depicting both classes transformed un-
der both augmentations. We perform dimensionality reduc-
tion on the embeddings produced by OPL and SIPLV1 by
first applying PCA down to 50 dimensions and then t-SNE to
2. This yields the plots seen in Figure 4. Neither model clus-
ters classes seemingly well, however OPL heavily clusters
styles together. Contrastingly, SIPLV1 does not have such
clustering according to style. In fact, we see that almost all
embeddings from SIPLV1 are grouped in pairs of different
styles. These are the embeddings of the same image under
two different styles, which demonstrates that style invari-
ance in SIPLV1 is indeed achieved in the embedding space,
even though it is only enforced at a low dimensional output
space.

This result is notable in so far as it is poorly explainable

with the concept of refinements employed in (Mitrovic et al.,
2020). As patch localization is in general not a refinement of
any nontrivial downstream task, this observation also holds
for the successful results from section 4. This could draw
into question the merit of the concept of refinements for
explaining the success of mutual information approaches in
self-supervised learning. Of course, this would need to be
investigated more rigorously.

5. Summary
Introducing RELIC-like style invariance to the pretext task
of patch localization leads to embeddings that facilitate the
downstream task of image classification. Though multiple
different models were tried, all performed similarly when
evaluated. The results we produce in this project are diffi-
cult to interpret on a large scale, as it is hard to say how our
results will scale to industry-standard datasets. Additionally,
enforcing style invariance at the pretext stage may introduce
a bias towards our particular choice of downstream evalu-
ation task. It would be interesting to see how our models
behave in object detection, as was used by (Doersch et al.,
2015) in their original paper.

However, we believe that these results provide an interesting
perspective on RELIC. For instance, it is not clear how en-
forcing style invariance at the output of patch localization, a
pretext task with only 8 classes, improves the expressiveness
of embeddings for such a fine-grained downstream task as
image classification. This connects again to our mention of
refinements in section 4.1, which the authors of RELIC used
to explain downstream performance. It is thinkable, that the
concept of refinements can be expanded to explain this trans-
fer learning, but currently it cannot. It should be interesting
to explore exactly when style invariance conditions at the
pretext task output lead to improved latent representations.

Enforcing Style Invariance in Patch Localization

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.

Optuna: A next-generation hyperparameter optimization
framework. CoRR, abs/1907.10902, 2019. URL http:
//arxiv.org/abs/1907.10902.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Doersch, C., Gupta, A., and Efros, A. A. Unsupervised vi-
sual representation learning by context prediction. CoRR,
abs/1505.05192, 2015. URL http://arxiv.org/
abs/1505.05192.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015. URL https://
arxiv.org/abs/1512.03385.

Jing, L., Vincent, P., LeCun, Y., and Tian, Y. Understand-
ing dimensional collapse in contrastive self-supervised
learning. CoRR, abs/2110.09348, 2021. URL https:
//arxiv.org/abs/2110.09348.

Mitrovic, J., McWilliams, B., Walker, J. C., Buesing, L.,
and Blundell, C. Representation learning via invariant
causal mechanisms. CoRR, abs/2010.07922, 2020. URL
https://arxiv.org/abs/2010.07922.

http://arxiv.org/abs/1907.10902
http://arxiv.org/abs/1907.10902
http://arxiv.org/abs/1505.05192
http://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2110.09348
https://arxiv.org/abs/2110.09348
https://arxiv.org/abs/2010.07922

Enforcing Style Invariance in Patch Localization

A. Additional Parameter Listings

Table 2. The parameters used for our augmentation pipeline. For random transformations we give the permitted range.

RANDOM RESIZED CROP:
AREA SCALE [0.32, 1]
ASPECT RATIO [3

4
, 4
3
]

COLOR JITTER:
BRIGHTNESS RATIO [0.2, 1.8]
CONTRAST RATIO [0.2, 1.8]
SATURATION RATIO [0.2, 1.8]
HUE JITTER [−0.2, 0.2]

GAUSSIAN BLUR:
KERNEL SIZE 23× 23
STANDARD DEVIATION [10−10, 0.2]

RANDOM SOLARIZE:
THRESHOLD 0.5
PROBABILITY 0.2

RANDOM GRAYSCALE:
PROBABILITY 0.05

NORMALIZATION:
MEAN PER CHANNEL (0.485, 0.456, 0.406)
STANDARD DEVIATION PER CHANNEL (0.229, 0.224, 0.225)

Table 3. The hyperparameters used to train all four models.

MODEL α
PRETEXT

LEARNING RATE
DOWNSTREAM

LEARNING RATE
WEIGHT DECAY BATCH SIZE OPTIMIZER

OPL - 5E-5 1E-4 0 64 ADAM
SIPLV1 5 5E-5 1E-4 0 64 ADAM
SIPLV2 5 5E-5 1E-4 0 64 ADAM
SIPLV3 5 5E-5 1E-4 0 64 ADAM

B. Model Performance Evaluation

Table 4. The best validation accuracies of all four models on the pretext and downstream tasks.

MODEL
PRETEXT

ACCURACY (%)
DOWNSTREAM
ACCURACY (%)

OPL 50.5 13.3
SIPLV1 35.4 16.8
SIPLV2 35.9 16.5
SIPLV3 32.0 15.3

