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(a) Input Image (b) “Add snow
on the road”

(c) “Change the time
to nighttime”

(d) “Turn the road
into wood”

(e) “Add rain
on the road”

Figure 1. Representative results showcasing our method’s ability to perform precise and realistic edits. The input image is displayed
alongside four diverse edits, highlighting our approach’s capacity to align with user intentions while preserving structural coherence.

Abstract

We present a novel approach to training specialized
instruction-based image-editing diffusion models, address-
ing key challenges in structural preservation with input im-
ages and semantic alignment with user prompts. We in-
troduce an online reinforcement learning framework that
aligns the diffusion model with human preferences without
relying on extensive human annotations or curating a large
dataset. Our method significantly improves the realism and
alignment with instructions in two ways. First, the proposed
models achieve precise and structurally coherent modifi-
cations in complex scenes while maintaining high fidelity
in instruction-irrelevant areas. Second, they capture fine
nuances in the desired edit by leveraging a visual prompt,
enabling detailed control over visual edits without lengthy
textual prompts. This approach simplifies users’ efforts to
achieve highly specific edits, requiring only 5 reference im-
ages depicting a certain concept for training. Experimental
results demonstrate that our models can perform intricate
edits in complex scenes, after just 10 training steps. Finally,
we showcase the versatility of our method by applying it to
robotics, where enhancing the visual realism of simulated
environments through targeted sim-to-real image edits im-
proves their utility as proxies for real-world settings.

1. Introduction
Text-to-image (T2I) generative models have achieved re-
markable success in creating visually compelling images
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from text prompts [27, 52, 55], driven by advancements in
aligning captions with images [1, 50].

Leveraging these impressive generative capabilities, T2I
models have facilitated the development of instructional im-
age editing, offering a highly practical approach for seman-
tic modifications [12, 20, 28, 29, 63, 84, 86, 89]. Unlike
conventional image editing techniques [13, 24, 33, 38, 44,
71] that necessitate detailed descriptive captions for both the
input and modified images, instruction-based image edit-
ing relies only on natural-language directives to specify
changes while leaving unrelated attributes intact.

While instructional editing has gained popularity for cre-
ative applications, its potential remains underexplored in
domains requiring precision and consistency. Synthetic
data has proven effective for pretraining and augmentation
[7, 8, 32, 70]. Yet, existing methods [3, 6, 17, 21, 60, 65, 66,
83, 87, 91] fail to leverage instructional editing for generat-
ing samples closely aligned with user intentions. To address
this gap, we identify two key criteria for effective image-
editing models.

Structural Alignment: Modifications should be confined
to specified regions while preserving high fidelity else-
where. Current state-of-the-art methods like Instruct-
Pix2Pix [12] often struggle with precise edits due to limi-
tations inherited from their training data [24]. These limita-
tions can result in edits that inadvertently affect background
elements or fail to maintain global coherence—an essen-
tial factor for achieving realism and preserving the over-
all structure of the original image. Incorporating segmenta-
tion and semantic guidance directly into the editing process
helps address these challenges, ensuring modifications are
both targeted and structurally consistent.
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Semantic Alignment: Models should enable fine-grained
control over desired modifications by leveraging both tex-
tual and visual prompts. Visual prompts capture stylistic
nuances that are difficult to articulate in text alone, alle-
viating user effort while ensuring edits align closely with
expectations.

To meet these criteria, we propose aligning diffusion
models with human preferences through online reinforce-
ment learning from AI feedback (RLAIF). Unlike tradi-
tional RLHF methods, which rely on human annotations,
RLAIF uses AI-generated feedback to enforce structural
and semantic alignment directly in the latent space of an
encoder trained to emulate human judgments. This ap-
proach also circumvents the limitations of the standard de-
noising objective, which requires an oracle to generate pre-
cise input-output pairs for training. Such oracles are of-
ten biased, lack scalability, or produce low-quality samples
that necessitate extensive pruning [12, 14, 63, 84]. By mov-
ing away from the denoising objective, our method focuses
on preserving high-level structural coherence and capturing
nuanced semantic features, ensuring edits align closely with
user expectations without compromising realism or preci-
sion.

In this work, we introduce a novel self-play framework
that specializes instruction-based image-editing diffusion
models to produce edits highly aligned with visual prompts
while preserving original structures in non-pertinent ar-
eas. Our method builds on InstructPix2Pix [12] and sur-
passes state-of-the-art baselines in both structural preser-
vation, instruction adherence and predicted human prefer-
ence. Beyond creative applications, we showcase its util-
ity in robotics by enhancing simulated environments with
realistic edits that improve their alignment with real-world
settings. Our contributions are summarized as follows:
1. We propose a novel RLAIF-based framework addressing

structural and semantic alignment challenges in image
editing.

2. We adapt T2I diffusion models to capture nuanced visual
styles from exemplars while adhering to simple textual
instructions.

3. We conduct comprehensive quantitative and qualitative
evaluations, demonstrating enhanced precision in intri-
cate edits, stronger alignment with instruction prompts,
and practical utility like improving the realism of simu-
lation environments in robotics.

2. Related Works
Text-guided Image Editing. Prior approaches to text-
guided image editing can be categorized into three distinct
groups: architectural modifications, per-sample optimiza-
tion, and large scale finetuning.

In the first category, methods like Prompt-to-Prompt
(P2P) [24] manipulate attention maps in the diffusion

model’s U-Net [56] to control the layout and content of
the editing. Plug-and-Play [71] injects self-attention maps
and spatial features to improve structural coherence. While
these approaches are effective for specific tasks, their re-
liance on architectural tweaks often limits their ability to
handle complex scenes with intricate details. Other works
leverage segmentation masks [2, 13, 39, 46, 64, 74, 78] or
semantic masks [43, 45, 82, 85] during the forward pass
to guide edits. However, these methods impose additional
burdens on users by requiring them to provide these masks.
MGIE [20] and SmartEdit [28] address this limitation by
integrating multimodal large language models (LLMs) to
enhance instruction comprehension and reasoning capabil-
ities. Despite their advancements, these methods introduce
significant architectural overhead by incorporating large ad-
ditional components, greatly increasing computational de-
mands.

In the second category, optimization-based methods like
Null-Text Inversion [44] adjust the null-text embedding dur-
ing the inversion for each input image. Imagic [33] fine-
tunes model weights and embeddings to align with both the
input image and the edit prompt. RB-Modulation [57] uses
a stochastic optimal controller to align content and style
with visual prompts. While effective, these methods are
time-intensive as they require optimization for each individ-
ual sample during inference, resulting in slower generation
speeds

The third category includes methods that adopt stan-
dard denoising training on large synthetic datasets. In-
structPix2Pix [12] trains on a dataset generated using P2P
and instruction-based prompts. Emu Edit [63] expands this
dataset with semantic and structural filters and employs
multi-task training for improved generalization. SuTI [14],
MagicBrush [84], HQ-Edit [29], and UltraEdit [89] rely on
curated datasets synthesized using models like Imagen [59],
DALL-E 2 and 3 [52], or LLMs. These datasets are often
manually pruned or filtered to ensure quality. Alchemist
[62], on the other hand, uses a rendering tool specifically
designed for material attribute modifications. However, all
these methods depend on an oracle to generate training data,
which introduces biases, requires curation efforts, and may
still carry limitations from the oracle itself.

Our method distinguishes itself from these approaches
in several ways. Unlike architectural modification meth-
ods, we do not rely on large additional components in the
forward pass architecture to improve performance, ensur-
ing simplicity and efficiency. Unlike per-sample optimiza-
tion techniques, our method does not require computation-
ally expensive optimization steps during inference. Un-
like large-scale finetuning approaches that depend on cu-
rated synthetic datasets generated by external oracles, we
leverage the diffusion model’s own samples for training
without additional data generation pipelines or curation ef-
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forts. Building upon InstructPix2Pix, our approach ad-
dresses misalignments between structural preservation and
prompt adherence through targeted finetuning steps while
maintaining generalization to unseen input images. By fo-
cusing on simplicity and efficiency in both training and in-
ference stages, our method achieves state-of-the-art perfor-
mance without relying on external datasets or complex ar-
chitectural modifications.

Visual Prompting. Most works on visual prompting for
image generation have focused on style transfer, where
the style of an image is modified across the entire frame
[25, 67, 73]. Recent studies have also explored subject-
driven editing by finetuning pre-trained T2I models using
a set of reference images [23, 58]. However, these methods
often require unique identifiers to encode the concept from
the prompt into the edit, limiting their flexibility and usabil-
ity. In contrast, our work focuses on local edits conditioned
on visual prompts, paired with simple text instructions. By
leveraging visual prompts, we reduce the user’s burden to
articulate complex edits in detail while maintaining precise
control over the desired modifications. This combination of
visual and textual guidance ensures alignment with user in-
tentions without requiring lengthy or intricate text prompts.
Moreover, prior approaches often rely on the diffusion de-
noising objective for style alignment, which can lead to re-
productions of reference styles that fail to meet human ex-
pectations. Instead, we enforce alignment in the latent space
of an encoder trained to match human judgments, captur-
ing both high-level semantic features and subtle stylistic nu-
ances while preserving structural fidelity. Our method en-
ables localized edits with minimal user effort and moves be-
yond the limitations of traditional denoising objectives, en-
suring results that are visually appealing and closely aligned
with user preferences.

Reinforcement Learning for Diffusion. Aligning model
outputs with human preferences has been widely success-
ful in language modeling. For objectives that are difficult to
define explicitly, reinforcement learning with human feed-
back (RLHF) [4, 15, 48, 68] has emerged as a popular strat-
egy. RLHF involves training a reward function to mimic
human preferences and using reinforcement learning algo-
rithms like proximal policy optimization [61] to finetune
models based on these rewards.

In the context of diffusion models, several works have
explored using human feedback for T2I generation. Lee
et al. [36] collect human annotations and perform maximum
likelihood training where the reward is applied as a naive
weight. Further, Wu et al. [76] design a reward model that
captures fine-grained human preferences more effectively.
DDPO [9] and DPOK [18] demonstrate that diffusion mod-
els can be trained with RL using a reward model emulating

human preferences, such as ImageReward [79]. For instruc-
tional image editing specifically, HIVE [86] extends large-
dataset supervised training by collecting human feedback
on edits and performing offline RLHF training.

However, these methods rely heavily on reward mod-
els trained on large-scale human annotations, which intro-
duce significant limitations. First, the annotation process is
cumbersome and costly, and the resulting supervision often
lacks consistency. Human evaluators’ ability to detect struc-
tural preservation inconsistencies diminishes over time due
to fatigue and attention variability. Second, semantic align-
ment remains vague as it is only compared to short instruc-
tion prompts, leaving room for subjective interpretation and
disagreement among annotators.

Our method addresses these challenges by leveraging
RLAIF [5, 35], eliminating the need for human-in-the-loop
supervision. Instead of relying on human annotations, we
use AI models to provide preference supervision tailored to
address structural and semantic alignment issues. Addition-
ally, unlike offline RL methods such as HIVE, we adopt an
online training framework inspired by D3PO [80], which
uses samples generated throughout training to ensure the
learning process remains adaptable and unrestricted by the
fixed distribution of pre-collected datasets. With such, our
method only needs a few steps of finetuning to produce ed-
its that are structurally coherent, semantically precise, and
aligned with user expectations, without relying on large-
scale human annotations.

3. Method
In this section, we describe the custom objective designed
to obtain parallel supervision for the semantic and struc-
tural alignment. In Sec. 3.1, we describe how to alleviate
the need for a reward model. Then, we explain in Sec. 3.2
how we design our two separate objectives. Finally, in Sec.
3.3, we present the modified architecture to intake the ad-
ditional visual prompt conditioning and its modified score
estimate formulation for classifier-free guidance with three
conditionings.

3.1. Reinforcement Learning for Diffusion Models
Most RLHF methods train a reward model to then train a
downstream model. However, Direct Preference Optimiza-
tion (DPO) [51] showed that preference ranking can be used
to train language models and circumvent reward models,
which Wallace et al. [72] extended to diffusion models. In
our work, we leverage the framework introduced by D3PO
[80], which expands that of DPO into a multi-step Markov
Decision Process (MDP).

Given a pair of outputs (y1, y2) ∼ πref(y|x) generated
from a reference pre-trained model πref, we denote the pref-
erence as yw ≻ yl|x and store the ranking tuple (x, yw, yl)
in dataset D, where yw and yl are the prefered and dispre-
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ferred samples respectively. Following the Bradley-Terry
model [10], the human preference distribution p∗ can be ex-
pressed by using a reward function r∗ as:

p∗(yw ≻ yl | x) =
exp(r∗(x, yw))

exp(r∗(x, yw)) + exp(r∗(x, yl))
(1)

A parametrized reward model rϕ can then be trained via
maximum likelihood estimation to approximate r∗ with:

LR(rϕ,D) = −E(x,yw,yl)∼D [log ρ(rϕ(x, yw)− rϕ(x, yl))] (2)

where ρ is the logistic function. Prior works in RL have
for objective to optimize a distribution such that its associ-
ated reward is maximized, while regularizing this distribu-
tion with the KL divergence to remain similar to its initial
reference distribution:

max
πθ

Ex∼D,y∼πθ(y|x) [rϕ(x, y)]− βDKL [πθ(y|x) ∥ πref(y|x)] (3)

where β controls the deviation between πθ and πref. This
distribution takes the following for optimal solution:

πr(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
(4)

where Z(x) =
∑

y πref(y|x) exp
(

1
β r(x, y)

)
is the parti-

tion function. Reorganizing Eq. 4, we obtain the expression
for the reward as a function of its associated optimal policy.

r(x, y) = β log
πr(y | x)
πref(y | x)

+ β logZ(x) (5)

Substituting the parametrized reward function and policy
for their optimal counterparts, we reintegrate that expres-
sion into Eq. 2. With the change of variables, the loss func-
tion is now expressed over policies rather than over reward
functions. This closed form avoids having to train a reward
model, but rather allows us to directly optimize the model.

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log ρ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)]
(6)

Extending this to diffusion models, we note a key difference
from the derived framework. The output is not generated
from a single forward pass, but rather a sequential process.
To address this, we pose the T -horizon MDP formulation,
adapted from [9], for the T -timesteps denoising process.

st = (xT−t, c, t) P0(s0) = (N (0, I), p(c), δ0)

at = xT−t−1 P (st+1 | st,at) = (δxT−t−1
, δc, δt+1)

r(st,at) = r((xT−t, c, t),xT−t−1)

π(at | st) = pθ(xT−t−1 | xT−t, c, t)

where pθ(x0:T |·) is a T2I diffusion model, δ is the Dirac
delta distribution, and c is the conditioning distributed ac-
cording to p(c). Note that we disregard r as our method

circumvents it. With such, we treat the denoising pro-
cess as a sequence of observations and actions: σ =
{s0, a0, s1, a1, ..., sT−1, aT−1}. Since we can only judge
the denoised output, we would need to update πθ(σ) =∏T

t πθ(st, at), which is intractable. Following [80], we as-
sume that if the final output of a sequence is preferred over
that of another sequence, then any state-action pair of the
winning sequence is preferred over that of the losing se-
quence. Hence, we determine the preferred sequence by
sampling an initial state s0 = sw0 = sl0, generating two
independent sequences, and ranking their output. Accord-
ingly, we express the objective at a certain timestep as:

Lt(πθ) = −E(st,σw,σl)

[
log ρ

(
β log

πθ(a
w
t |swt )

πref(aw
t |swt ) − β log

πθ(a
l
t|s

l
t)

πref(al
t|slt)

)]
(7)

3.2. Multi-objective Joint Training
Having established the mathematical framework for con-
verting preference rankings into a trainable loss, we now
detail how we determine the relative ranking between two
generated samples, Igen. Our model optimizes a composite
objective that enforces both structural alignment with the
input image Iin, and semantic alignment with the text in-
struction and visual style prompts, cT and Isty respectively.
We achieve this by decoupling the overall objective into two
separate scores.

Structural Score. To measure how well the structure of
the input image is preserved, we employ a monocular depth
estimation model [81]. Given a pair of input and edited im-
ages, we compute their respective depth map, and define the
structural score as the L1 distance between the two maps.

Lstruct =
1

h · w

h,w∑
i,j

|fϕ(Iin)i,j − fϕ(Igen)i,j | (8)

where fϕ is the depth model and h × w is the image reso-
lution. This metric effectively captures any missing, addi-
tional, or deformed elements in the edit relative to the orig-
inal input.

Semantic Score. The semantic alignment is evaluated
within the region of interest, where the edit is expected. To
identify this region, we use a text-conditioned segmenta-
tion model, grounded-SAM2 [41, 53, 54], which locates the
element to be edited based on the instruction. Similarly,
the visual prompt’s style may not span the entire frame,
so its relevant region is also segmented. For global ed-
its that are intended to cover the whole frame, the mask
can be defined to encompass the entire image. The seman-
tic alignment score is computed by measuring the distance
between embeddings of instruction-relevant patches in the
generated image and those in the style prompt image. Ad-
ditionally, we incorporate a pixel-space reconstruction ob-
jective for instruction-irrelevant regions that should remain
unchanged. This acts as a regularizer to enforce sharper
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boundaries and prevent the style from spreading into areas
outside the intended edit region. Accordingly, our semantic
score is:

Lsem = D(min ⊙ Iin, msty ⊙ Isty, fθ)

+ λ · (1−min)⊙ ∥Iin − Igen∥22
(9)

where D(·) is a distance metric, here the cosine distance,
min and msty are binary segmentation masks for the input
and style images respectively, ⊙ defines the element-wise
multiplication, and fθ is an encoder. The hyperparameter λ
balances the influence of the pixel reconstruction term rel-
ative to semantic alignment; empirically, we set λ = 0.5
for optimal performance. Among various encoders tested,
DreamSim [19] most effectively captures task-relevant fea-
tures (see Sec. 4.3 for ablations).

Similar to [88], we obtain advantages [69] by normaliz-
ing the scores on a per-batch basis using the mean and vari-
ance of each training batch. We then combine the distinct
structural and semantic advantages into a unique score, with
their relative contribution weighed by a hyperparameter α.

Ltotal = Âstruct + α · Âsem , where Â = L−µL√
σ2
L+ϵ

Our experiments indicate that α = 1 is optimal; however α,
like λ, can be tuned based on the model’s zero-shot perfor-
mance to accelerate learning convergence. Finally, we rank
generated sequences according to their total score.

3.3. Architecture for Multiple Conditionings
Our architecture builds upon InstructPix2Pix [12], which
itself adapts Stable Diffusion [55] with a key architectural
modification: additional input channels in the first convolu-
tional layer of the U-Net to incorporate the encoded input
image. We extend this approach by adding further input
channels to intake both the input and style images simulta-
neously. The weights for these newly added channels are
initialized to zero to ensure stable training. We enhance
performance by incorporating a cross-attention layer before
feeding the visual prompt into the network. This mecha-
nism helps better localize regions in both images that are
relevant to the editing directive. Specifically, the query is
formed from a linear projection of the concatenated VAE
encodings of the input and style images, E(Iin) and E(Isty),
while the key and value are derived from projections of the
CLIP-encoded instruction prompt. Importantly, the cross-
attention output maintains the same spatial dimensions as
the VAE-encoded images, preserving compatibility with the
pre-trained U-Net architecture.

For sampling, we leverage classifier-free guidance
(CFG) [26], which shifts probability mass toward regions
where an implicit classifier assigns high likelihood to the
conditioning, thereby improving sample quality and faith-
fulness. In our case, we compose the CFG estimate with

Input IP2P MBrush HQ-Edit HIVE Ours

“change the water for gold”

“turn the building into steel”

“turn the road into wood”

Figure 2. Qualitative comparison. Our method outperforms its
counterparts by significantly editing the image while sharply pre-
serving the structure of regions unrelated to the instruction. We
exclude the conditioning style image from the visualization since
it is not applicable to the other methods. Additional samples are
shown in Appendix 6.

respect to both the input image and the visual prompt [40],
allowing for more precise control over the editing process
(see Appendix 6.1 for the complete derivation).

4. Experiments
This section presents a comprehensive analysis of our ex-
perimental results, including baseline comparisons, ablation
studies, and applications in robotics. We demonstrate our
method’s effectiveness in performing precise and realistic
edits across diverse scenarios. For consistency, we use the
default guidance scale parameters from InstructPix2Pix and
set our visual conditioning score to sIsty = 3 (discussed in
Sec. 4.3).

Our evaluations focus on localized edits in complex
scenes using images from the Oxford RobotCar [42] and
Places [90] datasets, covering various edit types such as
weather and material changes (see full list of edits in Sec.
6.2). We evaluate 29,500 images at 256 × 256 resolution,
showing that our model outperforms baselines in realism
and alignment with user prompts, making it valuable for
applications like robotics.

4.1. Baseline Comparisons
We evaluate our model against state-of-the-art baselines,
including InstructPix2Pix (IP2P) [12], HIVE [86], Mag-
icBrush (MBrush) [84], and HQ-Edit [29], all built on the
stable diffusion v1.5 backbone.

We begin by comparing the qualitative results in Figure
2. InstructPix2Pix often struggles to precisely locate the
edit region, while MagicBrush and HQ-Edit generate un-
natural edits with unrealistic prompts. HIVE tends to prior-
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Figure 3. Quantitative comparison of instructional editing mod-
els. We plot the trade-off between input image consistency (Y-
axis) and edit consistency (X-axis). Higher values indicate better
performance for both metrics. For all methods, we fix the same
parameters as in Brooks et al. [12] and vary sIin ∈ [1.0, 2.0].

Structural ↓ Semantic ↑
Method Depth L2out CLIPin DINOin DSimin CLIPtxt

IP2P 43.81 0.052 0.422 0.119 0.181 0.231
MBrush 53.73 0.044 0.419 0.105 0.150 0.226
HQ-Edit 99.66 0.141 0.407 0.091 0.131 0.209
HIVE 28.50 0.038 0.428 0.094 0.158 0.215
Ours 20.76 0.041 0.430 0.123 0.240 0.241

Table 1. Comparison of structural preservation through depth
mask alignment and reconstruction metrics (left), and semantic
alignment with text and visual prompts (right). Text alignment
is evaluated using descriptive prompts capturing all image infor-
mation. Some metrics are computed for regions inside and outside
the edit mask, denoted by indices “in” and “out” respectively.

itize input fidelity over executing edits, sometimes resulting
in insufficient modifications. In contrast, our model strikes
a better balance between editing strength and input fidelity,
producing edits that are both prompt-aligned and faithful to
the original image. Additionally, our method reduces biases
associated with text prompts, such as suppressing irrelevant
hallucinations (e.g., forest when the word ”wood” is men-
tioned).

We quantitatively assess the tradeoff between input fi-
delity and text alignment. Input fidelity is measured via
cosine similarity of image patch embeddings outside the
edit region, using grounded SAM2 for high-quality mask-
ing. We capture both high and low-level features by aver-
aging scores across DINOv2 [47], CLIP [49], and Dream-
Sim [19] encoders. Text alignment is evaluated using direc-
tional CLIP similarity [22], which measures how well the
change in descriptive captions agrees with the change in in-
put and generated images. Both metrics are antagonistic,
increasing the desired edit strength will reduce the output’s
faithfulness to the input image. In Figure 3, our method
achieves higher directional similarity values for the same
level of image consistency compared to baselines. Quan-

Input Sparse Snow Dense Snow

Figure 4. Visualization of the impact of the visual prompt (dis-
played in dashed lines contour) on generated samples when pro-
vided the text instruction “add snow on the road”. Our method
effectively captures semantic nuances beyond that described in the
text prompt. We present further applications of such nuanced con-
trol for materials in Fig. 10, demonstrating how our method can
effectively handle diverse visual styles and attributes, such as vary-
ing colors, while maintaining structural coherence.

titatively, these results also suggest that counterparts like
HIVE tend to prioritize preserving the input image over ex-
ecuting strong edits, as evidenced by their lower directional
similarity scores. In contrast, our model strikes a better bal-
ance between editing strength and input fidelity. Addition-
ally, Table 1 shows that while HIVE excels at reconstructing
unchanged regions, our model closely matches this perfor-
mance and outperforms others in depth mask alignment, in-
dicating effective preservation of fundamental structure cru-
cial for visual coherence.

We demonstrate our model’s ability to interpret subtle
details beyond text prompts by training it to add dense and
sparse snow layers without explicit text instructions. Figure
4 shows that our model effectively reproduces the visual
style hinted at in the text prompt while respecting the input
image’s spatial composition. This underscores the benefit
of leveraging a visual prompt to infuse fine-grained nuances
without requiring a extensive text descriptions.

We quantitatively validate these observations in Table 1.
Our evaluation focuses on two key aspects: visual seman-
tic alignment between regions-of-interest, and text-image
alignment scores. For the visual alignment, we compute
the cosine similarity between masked regions in the gener-
ated and conditioning images, across DINOv2, CLIP, and
DreamSim embeddings. The text-image alignment is mea-
sured through CLIP similarity (CLIPtxt) between the edited
image and output caption. We find that our model surpasses
all baselines, both in the visual and text-image alignments,
confirming our method’s efficacy to increase instruction fi-
delity.
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Method ImageReward ↑ PickScore ↑ HPSv2 ↑
IP2P -0.478 18.83 21.86
MBrush -0.584 18.77 21.58
HQ-Edit -0.858 18.69 22.77
HIVE -0.723 18.82 21.38
Ours -0.396 18.85 22.03

Table 2. Comparison between instructional editing models on
human-preference-aligned visual scoring metrics.

Finally, we compare the scores obtained from T2I syn-
thesis preference prediction models, namely ImageReward
[79], PickScore [34], and HPSv2 [75], which emulate hu-
man preferences. We find in Table 2 that our model outper-
forms its counterparts across the different edits. This con-
firms our model’s superior ability to preserve the essential
structural features of the input image, which are crucial for
perceived realism, while also aligning effectively with the
specified editing instructions.

4.2. Sim-to-Real Editing
Our image editing model demonstrates utility beyond cre-
ative applications by enhancing the visual realism of sim-
ulated robotics environments, addressing a critical limita-
tion in their use for robotics research. In robotics, eval-
uating generalist manipulation policies poses significant
challenges due to the scalability and reproducibility con-
straints of real-world testing. SIMPLER [37], a framework
for simulation-based evaluation, aims to provide a reliable
proxy for real-world assessments. A major challenge high-
lighted by Li et al. [37] is the visual disparity between simu-
lated environments and their real-world counterparts, which
can undermine the accuracy of policy evaluation. They mit-
igate this gap with a 2-step approach called visual match-
ing (VisMatch), which overlays simulated elements onto
real-world backgrounds, and bakes their textures and col-
ors from real-world images. However, this method has
notable limitations: it relies heavily on human effort, as
texture matching is not automated and requires extensive
curation of visual assets alongside access to 3D modeling
tools. Hence, it does not scale efficiently, as assembling new
scenes demands additional human input for each instance.

To further reduce the sim-to-real gap, we propose
leveraging our image editing method to simulated scenes.
Specifically, we finetune an editing diffusion model using
only 5 reference images to produce realistic edits in a given
style within the environment. These editing models can
then be used to modify the robots’ observations of their
simulated environment during evaluation, introducing real-
istic textures and materials that better align with real-world
settings. We conduct experiments in the opening/closing
drawer task of the Google Robot environment, as the table

Input Wood Steel Marble Leather

Figure 5. Examples of a simulated scene edited by our method,
showcasing enhanced realism compared to the original image
across various styles. See Appendix 6.4 for more variants.

Visual Domain Open Close Average

SIMPLER-VarAgg 0.000 0.130 0.083
MMRV↓ SIMPLER-VisMatch 0.000 0.130 0.083

Ours 0.000 0.000 0.000

SIMPLER-VarAgg 0.915 0.756 0.964
Pearson r↑ SIMPLER-VisMatch 0.987 0.891 0.972

Ours 0.917 0.978 0.966

Table 3. Comparison of visual domains for RT-1 policy evaluation
on Google Robot tasks. Using our method results in much stronger
correlation with real evaluation than using the SIMPLER methods.
See Table 4 for a detailed breakdown of results per policy.

texture domain shift is known for being one of the most dif-
ficult for policies to generalize effectively [77]. To evaluate
our method, we specialize expert models to generate vari-
ants of the cabinet in diverse materials: wood, gold, leather,
stone, steel, and marble.

Visual exemplars in Fig. 5 demonstrate that our method
can convincingly alter simulated scenes to resemble real-
world counterparts across various styles. Quantitatively, we
assess the realism of our generated images by evaluating
robot policies trained in the real-world on our edited im-
ages. Following Li et al. [37], we conduct evaluations us-
ing multiple RT-1 [11, 16] checkpoints. See Appendix Sec
6.4 for further experiment details. Table 3 summarizes the
results for Mean Maximum Rank Violation (MMRV) and
Pearson correlation coefficient (Pearson r) scores obtained
for VisMatch and our method. Additionally, we evaluate
the variant aggregation method (VarAgg), which combines
many visually randomized versions of a simulated scene,
including variations in drawer texture. These metrics re-
spectively measure the ranking and linear consistency be-
tween simulated and real-world performance. Some poli-
cies are highly sensitive to visual discrepancies between
simulation and reality, which exacerbates the challenges in-
troduced by domain shifts and causes VarAgg to perform
worse than VisMatch. Nonetheless, our method outper-
forms both VarAgg and VisMatch, achieving higher MMRV
scores—identified by Li et al. [37] as the more robust met-
ric—and higher Pearson r scores for the closing task. This
stronger correlation indicates that our edits provide a more
realistic proxy for real-world evaluations. Refining finer
details, such as drawer handles, presents a promising way
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Figure 6. We plot the trade-off between consistency with the input
image (Y-axis) and consistency with the visual prompt (X-axis).
For both metrics, higher is better. We fix the same parameters as
in [12] and vary the sIsty ∈ [1.0, 6.0]

Input Style DINOv2 CLIP DreamSim

Figure 7. Qualitative comparison of the reproduction of the visual
prompt induced by different encoders. Best viewed zoomed-in.

to further enhance alignment between simulated and real-
world environments, as suggested by the lower performance
on the opening task against VisMatch. Overall, our ap-
proach offers a scalable solution for bridging the visual re-
alism gap in robotics policy testing by reducing reliance on
manual efforts and enabling automated generation of realis-
tic edits across diverse styles.

4.3. Ablation Study
Classifier-free-guidance scale. In Figure 6, we exam-
ine how varying the classifier-free-guidance scale sIsty from
Eq. 13 affects the edit’s alignment with the visual prompt.
Increasing its value enhances alignment with the visual
prompt but reduces similarity with the input image. We find
that values between 1 and 5 yield the best results, and thus
use sIsty = 3 for quantitative evaluations in Sec. 4.1. In
practice, and for qualitative results shown in the paper, we
find it beneficial to adjust this guidance weight for each edit
type to obtain an optimal balance between faithfulness to
the input and alignment with the visual prompt.

Encoder Choice. Different encoders capture distinct in-
formation, influencing the learning process and output qual-
ity. Other works commonly use DINOv2 and CLIP as eval-
uation metrics for generated sample quality [12, 63, 84].
However, recently, DreamSim showed to outperform those
encoders in alignment with human preferences. We there-
fore compare the impact of the selected encoder by train-
ing three versions of our method to edit sparse snow, and
replacing the encoder in Eq. 9. We only analyze quali-

tative results, since all semantic visual alignment metrics
are based on these encoders. We find in Fig. 7 that the
images generated by the DINOv2-guided model possess a
grainy texture that is not present in the visual prompt. Also,
the CLIP-guided model reproduces excessively smooth and
vaguely defined snow lanes compared to the visual prompt,
with an unwanted purple tint across the frame. Contrast-
ingly, DreamSim better enforces the color and structure of
the visual prompt, and does not lead to learning spurious
cues like an unrelated tint or saturated colors. Further, it
best reproduces the structure of the snow stripes. This re-
sults in more realistic samples with stronger alignment to
the prompt.

5. Conclusion
In this paper, we introduce a novel approach to instruction-
based image editing that enhances structural preservation
and semantic alignment through few-steps finetuning, ef-
fectively mimicking human preferences without direct feed-
back. Our method demonstrates that these improvements
can be achieved by leveraging AI-generated feedback, cir-
cumventing the need for extensive human annotations or
large-scale datasets. Our models learn to capture and re-
produce intricate details in visual prompts, with only 5 ex-
amples per concept, further reducing the reliance on elabo-
rate textual prompts. Our approach significantly improves
upon previous state-of-the-art methods in balancing faith-
fulness to the input image and alignment with instruction
prompts, resulting in samples with higher perceived real-
ism. The efficient finetuning approach with visual prompts
enables complex sim-to-real edits using minimal reference
images, demonstrating potential for high-quality simulated
evaluation environments in robotics.

While our approach shows significant improvements, we
acknowledge certain limitations. The current method pri-
marily excels at modifying textures and surfaces rather than
altering global shapes of objects. Future work could ex-
plore more flexible constraints in masking and depth align-
ment operations, potentially allowing for more substantial
structural modifications like adding and removing elements.
Our model may inherit biases from the pre-trained Instruct-
Pix2Pix model and the encoder used for semantic alignment
supervision. However, this limitation can be mitigated by
substituting these components with suitable alternatives in
a modular fashion.

We hope to inspire further research in online reinforce-
ment learning for T2I models and additional studies on
crafting AI-generated rewards for objectives that better
align with human intent.
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6. Appendix
6.1. Derivation for Classifier-free Guidance with Three Conditionings
We introduce separate guidance scales like InstructPix2Pix to enable separately trading off the strength of each conditioning.
The modified score estimate for our model is derived as follows. Our generative model learns P (z|cT , cIsty , cIin), which
corresponds to the probability distribution of the image latents z = E(x) conditioned on an input original image cIin , a
reference style image cIsty , and a text instruction cT . We arrive at our particular classifier-free guidance formulation by
expressing the conditional probability as follows:

P (z|cT , cIsty , cIin) =
P (z, cT , cIsty , cIin)

P (cT , cIsty , cIin)

=
P (cT |cIsty , cIin , z)P (cIsty |cIin , z)P (cIin |z)P (z)

P (cT , cIsty , cIin)

(10)

Diffusion models estimate the score [30] of the data distribution, i.e. the derivative of the log probability. Taking the
logarithm of the expression above yields the following:

log(P (z|cT , cIsty , cIin)) = log(P (cT |cIsty , cIin , z))

+ log(P (cIsty |cIin , z))

+ log(P (cIin |z))
+ log(P (z))

− log(P (cT , cIsty , cIin))

(11)

Taking the derivative and rearranging, we obtain:

∇z log(P (z|cT , cIsty , cIin)) = ∇z log(P (z))

+∇z log(P (cIin |z))
+∇z log(P (cIsty |cIin , z))

+∇z log(P (cT |cIsty , cIin , z))

(12)

This corresponds to the following formulation of classifier-free guidance, with three classifier-free-guidance scales:

ẽθ(zt, cIin , cIsty , cT ) = eθ(zt,∅,∅,∅)

+ sIin · (eθ(zt, cIin ,∅,∅)− eθ(zt,∅,∅,∅))

+ sIsty ·
(
eθ(zt, cIin , cIsty ,∅)− eθ(zt, cIin ,∅,∅)

)
+ sT ·

(
eθ(zt, cIin , cIsty , cT )− eθ(zt, cIin , cIsty ,∅)

) (13)

6.2. Training Details
In training, we initialize our model from the InstructPix2Pix checkpoint. Depending on the specialization, we train as few as
six steps at a resolution of 256 × 256, with a total batch size of 256 samples. For a fair comparison, we maintain the same
RL training hyperparameters as in D3PO [80] without conducting hyperparameter optimization. Additionally, we do not
optimize for the best text prompt for each edit type, as we design our approach to leverage the visual prompt as the primary
carrier of semantic information, minimizing reliance on extensive textual descriptions.

The selection of hyperparameters λ and α requires balancing multiple objectives for optimal performance. While our
recommended values work well across most scenarios, these parameters can be slightly fine-tuned based on the model’s
zero-shot capabilities to further optimize learning convergence. This flexibility allows practitioners to adapt the framework
to specific task requirements while maintaining robust performance.

6.3. Real Image Experiment Details
Our evaluations focus on the ability to perform localized edits in complex scenes containing multi-level information, includ-
ing local objects, global layout, and background environments that must remain unchanged unless explicitly instructed. We
use two datasets for our experiments.
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With the Oxford RobotCar Dataset [42], we train our model to perform seven types of edits: adding dense snow on the
road, adding sparse snow on the road, adding rain on the road, adding sand on the road, changing the road to gold, changing
the road to wood, and changing the entire scene to nighttime (using a full-frame mask).

With the Places Dataset [90], we train our model on six additional edit types: changing water to gold, changing a bed
to leather, changing a building facade to steel, changing a telephone booth to stone, changing a lighthouse to terracotta,
changing a train to wood.

When selecting edit types for our experiments, we aimed to cover a diverse range of materials, textures, and environmen-
tal modifications to demonstrate the versatility and robustness of our approach. This diverse selection allows us to assess
our method’s performance across both realistic modifications (weather changes) and more stylistic transformations (mate-
rial changes), while testing its ability to maintain structural coherence across different scene types, object scales, and edit
complexities.

To prevent overfitting on spurious cues, we alternate between five conditioning style images related to the same text prompt
during training. Our evaluations cover 29,500 images at a resolution of 256× 256 across both datasets and edit types (2,500
images for each of the seven Oxford RobotCar edits and 2,000 images for each of the six Places edits).

For baseline comparisons, we evaluate the InstructPix2Pix checkpoint from which we initialize our model, and the best
publicly available versions of HIVE, HQ-Edit, and MagicBrush based on StableDiffusion v1.5.

While our model is trained at 256 × 256 resolution, we find it generalizes well to 512 × 512 resolution at inference
time. We generate qualitative results at 512× 512 resolution with 100 denoising steps using an Euler ancestral sampler with
denoising variance schedule proposed by Karras et al. [31]. Editing an image with our model takes approximately 9 seconds
on an A100 GPU.

6.4. Sim-to-real Experiment Details

Google Robot
Evaluation Setup Policy

Open / Close Drawer

Open Close Average

Real Eval

RT-1 (Converged) 0.815 0.926 0.870
RT-1 (15%) 0.704 0.889 0.796
RT-1-X 0.519 0.741 0.630
RT-1 (Begin) 0.000 0.000 0.000

SIMPLER Eval
(Variant Aggregation)

RT-1 (Converged) 0.270 0.376 0.323
RT-1 (15%) 0.212 0.323 0.267
RT-1-X 0.069 0.519 0.294
RT-1 (Begin) 0.005 0.132 0.069

MMRV↓ 0.000 0.130 0.083
Pearson r↑ 0.915 0.756 0.964

SIMPLER Eval
(Visual Matching)

RT-1 (Converged) 0.601 0.861 0.730
RT-1 (15%) 0.463 0.667 0.565
RT-1-X 0.296 0.891 0.597
RT-1 (Begin) 0.000 0.278 0.139

MMRV↓ 0.000 0.130 0.083
Pearson r↑ 0.987 0.891 0.972

Ours

RT-1 (Converged) 0.471 0.810 0.640
RT-1 (15%) 0.259 0.619 0.439
RT-1-X 0.180 0.608 0.394
RT-1 (Begin) 0.021 0.058 0.040

MMRV↓ 0.000 0.000 0.000
Pearson r↑ 0.917 0.978 0.966

Table 4. Real-world, standard SIMPLER environment, and our visually-edited environment evaluation results across different policies on
the Google Robot “(open/close) (top/middle/bottom) drawer” task. We present success rates for the ’Variant Aggregation’ and ’Visual
Matching’ approaches, as well as our novel visually edited environments with seven material styles. We calculate the Mean Maximum
Rank Violation (’MMRV’, lower is better) and the Pearson correlation coefficient (’Pearson r’, higher is better) to assess the alignment
between simulation and real-world relative performances across different policies.

In this section, we provide detailed descriptions of our robotics experiments using the SIMPLER environments. We follow
the same evaluation protocol as established in SIMPLER [37], focusing on a language-conditioned drawer manipulation task
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where the robot must ”(open/close) (top/middle/bottom) drawer.” The robot is positioned in front of a cabinet with three
drawers and must manipulate the specified drawer according to the instruction. For our simulation experiments, we also
place the robot at 9 different grid positions within a rectangular area on the floor, resulting in 9 × 3 × 2 = 54 total trials.

Following SIMPLER, we conduct experiments on RT-1 checkpoints at various training stages: RT-1-X, RT-1 trained to
convergence (RT-1 Converged), RT-1 at 15% of training steps (RT-1 15%), and RT-1 at the beginning of training (RT-1
Begin).

We train our model to modify the cabinet’s material using seven different styles: gold, leather, white marble, black
marble, steel, stone, and wood. Importantly, we only modify the visual appearance of the cabinet without changing any
physical properties such as friction coefficients, material density, center of mass, or static and dynamic friction. Since our
method involves a non-deterministic diffusion process, we extend the SIMPLER protocol by averaging success rates across
three different random seeds and across the seven different edit styles (gold, leather, dark marble, black marble, steel, stone,
and wood) to produce lower-variance performance estimates.

For the VisMatch, VarAgg and Real evaluation results presented in Table 4, we directly reference the values reported in
SIMPLER.

6.5. Additional Qualitative Results
This section of the appendix provides supplementary qualitative results, including a comparative evaluation against baselines
(Figures 8 and 9), demonstrating superior performance in structural preservation, semantic alignment, and realism. We also
provided a extended visualization of the impact of different visual prompts on generated samples (Figure 10), showcasing
how our method captures semantic nuances beyond text prompts. Additionally, we present examples of simulated scenes
edited with enhanced realism (Figure 11), and highlight the flexibility of our approach in replicating visual prompts across
diverse scenes (Figure 12). Finally, we display diverse examples of realistic edits generated by our method (Figures 13 and
14), illustrating precise structural preservation and semantic alignment across various scenes and styles.
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Input InstructPix2Pix MagicBrush HQ-Edit HIVE Ours

“Change the lighthouse into terracotta”

“Turn the building into steel”

“Add snow on the road”

“Make the bed out of leather”

“Make the train out of wood”

“Change the time to nighttime”

Figure 8. Comparative evaluation of our method against baselines on a diverse set of prompts and images, highlighting superior perfor-
mance in structural preservation, semantic alignment, and realism.
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Input InstructPix2Pix MagicBrush HQ-Edit HIVE Ours

“Change the water for gold”

“Add snow on the road”

“Turn the building into steel”

“Make the bed out of leather”

“Add sand on the road”

“Change the road into wood”

Figure 9. Comparative evaluation of our method against baselines on a diverse set of prompts and images, highlighting superior perfor-
mance in structural preservation, semantic alignment, and realism.
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Input White Marble Black Marble

Input Sparse Snow Dense Snow

Figure 10. Visualization of the impact of different visual prompts on generated samples when provided a same text instruction. We show
edits of both real-world and simulation images. Displayed within the dashed frame is one of the 5 style conditioning images relevant to this
edit. Our method effectively captures semantic nuances beyond that described in the text prompt, understanding that the generated snow
should be dense or sparse, and that the generated marble should be white or black.
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Input Steel Marble Stone Leather

Figure 11. Examples of a simulated scene edited by our method, showcasing enhanced realism compared to the original image across
various styles. When training the diffusion model across the diverse styles, we use the same text prompt format: “make the cupboard out
of [X]”.

Reference style Synthetic element Small real element Large real element

Figure 12. The visual prompts can be precisely replicated across scenes with diverse layouts and types, demonstrating the flexibility of
our approach. We showcase variants of input images, including synthetic and real-world scenes, small and large elements, and various
materials, to illustrate the model’s ability to generalize effectively. Notably, our method achieves this versatility by leveraging only a few
visual exemplars during training, ensuring robust performance across a wide range of inputs.
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Input Edit Input Edit

“Change the lighthouse into terracotta”

“Change the water for gold”

“Make the bed out of leather”

“Turn the building into steel”

Figure 13. Diverse examples of realistic edits generated by our method, demonstrating precise structural preservation and semantic align-
ment across various scenes and styles. We show the input images, as well as both the text and visual prompts used to generate these edits.
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Input Edit Input Edit

“Change the time to nighttime”

“Transform the booth into stone”

“Add rain on the road” “Add snow on the road”

Figure 14. Diverse examples of realistic edits generated by our method, demonstrating precise structural preservation and semantic align-
ment across various scenes and styles. We show the input images, as well as both the text and visual prompts used to generate these edits
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